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1. ABSTRACT
Functional connectivity (FC) is a graph-like data structure commonly used by neuroscientists to study the
dynamic behaviour of the brain activity. However, these analyses rapidly become complex and time-consuming.
In this work, we present complementary empirical results on two tensor decomposition previously proposed
named modified High Order Orthogonal Iteration (mHOOI) and High Order sparse Singular Value Decomposition
(HOsSVD). These decomposition associated to k-means where shown to be useful for the study of multi trial
functional connectivity dataset.

Keywords: dynamic networks, graph decomposition, clustering, dimensionality reduction, sparsity, tensor
decompositions, HOOI, functional connectivity, iEEG.

2. INTRODUCTION
Epilepsy is one of the most common neurological disorders in the world population. iEEG electrodes1 are used
to exhibit the stages of a seizure distinguished by similar pattern in different areas of the brain. Functional
Connectivities (FC) that quantify along time these similarities are calculated between all pairs of signals, usually
by means of the spectral coherence or the Phase Locking Value.2 Considering electrodes as nodes and FCs
as weights on the edges, neuroscientists try to find in the data, graph-like structures evolving through time
(see Fig. 1). It is generally assumed that the FC dynamics are comparable from one seizure to another for a
same patient, another asset of iEEG monitoring is the possibility to record several seizures. In,? we proposed a
procedure able to extract relevant ensembles of simultaneously activated components, viewed as the edges of
sub-graphs of a FC network inferred from the iEEG signals.

More concretely, for each seizure, the recorded iEEG signals yield L pairwise Functional Connectivity measures
(FC) as time series of T samples. The corresponding data matrix X ∈ RL×T is referred to as an Epoch. As we
observe S different seizures for a same patient, the resulting epochs are stacked in a 3-modes tensor X ∈ RL×T×S .
The data analysis process, presented Fig. 2, corresponds to first apply a dimensionality reduction method in
order to denoise and reduce the dimensionality of the dataset, then apply k-means to the reduction. Notice that
directly applying an extension of k-means to the tensor X corresponds to maximize the following criteria :

argmax
A

|| AtX(L) ||2F (1)

Where A corresponds to a normalized cluster assignment matrix? and X(L) ∈ RL×TS is the mode-L matricization
of X . Such generalisation does not take advantage of the tensor structure of the dataset, moreover k-means
is known to perform poorly on high dimension (here TS).? In? we compared and proposed several reduction
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method, transforming the tensor X to a factor matrix F ∈ RL×K with K << TS. The final data analysis process
can then by resume by maximizing the following criteria where A as the same structure as in (1).

argmax
A

|| AtF ||2F (2)

The objective of this presentation is to present complementary empirical results on two tensor decomposition
proposed in? named modified High Order Orthogonal Iteration (mHOOI) and High Order sparse Singular Value
Decomposition (HOsSVD). Indeed both methods have an original algorithmic implementation without theoretical
proof of convergence and convergence speed yet. Also HOsSVD which is a sparse tensor decomposition has not
been compared to tensor decomposition with similar constraints. After recalling the notation, we present mHOOI,
HOsSVD and similar decompositions for comparison. Finally the convergence property of HOsSVD and mHOOI
are exhibited via a model of functional connectivity as well as the performance of HOsSVD to decompose a
dataset in sparse components via the same model and real epileptic datasets.

3. NOTATIONS
Tensors are denoted with bold case calligraphic letters X , matrices and vector are denoted respectively in bold
upper-case and lower-case X, x, and scalars by lower-case letters x. Notice that : l, t, s, k, n will be used as
indices, and L, T, S,K,N will be reserved to denote their index upper bounds. Here they corresponds respectively
to the FC mode, time mode, seizure (or trial) mode, number of factors and number of clusters. Then, x:t, resp.
xl:, corresponds to the column t, resp. to the row l, of the matrix X ∈ RL×T . The matrices Xl::, X:t: or X::s
correspond to the slices of the tensor X ∈ RL×T×S . The slice for each trial X::s is referred to as an epoch.

The matricization corresponds to the matrix representation of a tensor. The mode-L matricization of X is
noted X(L) ∈ RL×TS . Writing [A,B] the concatenation of two matrices A and B with the same number of rows,
the mode-1 matricization reads:

X(L) = [X::1,X::2, ...,X::S ]. (3)

Considering x,y ∈ RL, 〈x,y〉 =
∑L
l=1 xlyl is the scalar product between two vectors and || x ||F=

√
〈x,x〉 the

Frobenius norm. These notations can be extended to D-mode arrays,3, 4 e.g. 〈X,Y〉 =〈vec(X), vec(Y)〉 or
|| X ||F=|| vec(X(L)) ||F . The L1-norm for a matrix corresponds to:

|| X ||1=
L∑
l=1

T∑
t=1
| xlt |. (4)

Finally we define the Kronecker product between two matrix, noted C = A⊗B with A ∈ RL×T , B ∈ RK×N
and C ∈ RLK×TN , as:

C =

a11B . . . a1TB
...

...
aL1B . . . aLTB

 . (5)

4. REDUCTION METHODS
In order to reduce the tensor data X ∈ RL×T×S to a relevant factor matrix F ∈ RL×K , we propose the following
decomposition :

X(L) ≈ F(w⊗V)t (6)

where w ∈ RS is a vector performing a weighted average of the S epochs in order to extract common patterns, F
is the factor matrix and V ∈ RT×K corresponds to the temporal activation profile of the different factors. F is
scaled such that || w ||2F=|| v:k ||2F= 1 (to remove scaling indeterminacy and transfer all the energy in our factor



matrix). Without constraints on F, V and w, the High Order Orthogonal Iteration (HOOI) or the proposed
approach mHOOI can be used to perform this decomposition. However it as be shown in? that constraining F to
be sparse appears to be important because, in comparison to the case without this constraint, F becomes closer
to a cluster assignment matrix. Moreover, it limits the complexity of clusters by reducing the number of FC they
contain. This is important in the context of epileptic data where a large number of FC measurements can be
passively implied in a neurological process (during the discharge of the seizure for example). As well it seems
relevant to also impose V to be sparse so as to select specific temporal steps of FC activation, eliminating thus
period where there is no common activation of FC clusters. To perform this decomposition we proposed a new
algorithm HOsSVD, In a similar way, this be done thanks to a state of the art method like the sparse Tucker
decomposition proposed in.5

4.1 mHOOI
The proposed modified HOOI (noted mHOOI) is as follows, iterating 2 steps in alternance:

(A) At iteration (i + 1) we assume W(1)
i to be known. From this vector we compute the common Epoch

corresponding to X(L)(W
(1)
i ⊗ I) ∈ RL×T , with I ∈ RT×T the identity matrix (it corresponds to the mode-L

matricization of the contraction product between the tensor X and the vector W(1)t3). We then compute
the low rank approximations U(K)

i+1 and V(K)
i+1 as the K first components of the singular value decomposition

of X(L)(W
(1)
i ⊗ I) = Ui+1Λi+1Vt

i+1.

(B) In order to update W(1)
i+1 we first filter the tensor X by projecting it on the subspaces spanned by the

matrices U(K)
i+1 and V(K)

i+1 . W(1)
i+1 is then obtained by a special HOOI decomposition on the filtered tensor

with KL = L, KT = T and KS = 1. The optimal decomposition can be found analytically. Both the
filtering and the decomposition, in order to get W(1)

i+1, reduce to the problem of computing the dominant
left singular vector of X(S)(V

(K)
i+1 ⊗U(K)

i+1).

We summarize in Algorithm 1, this modified HOOI method (mHOOI) and how to obtain the corresponding
lower dimension factor matrix F. We use an angular metric between two successive estimates of W(1) as the
stopping criterion of the iterative procedure.

4.2 HOsSVD
The previous algorithm requires several SVD and the final matrix F is not sparse in general. As we already
noticed, sparsity constraints is wanted to get FC graphs with few edges, and because the SVD is impacted by the
curse of dimensionality it is desirable to limit its use. Following the same rationale, and in order to perform a
decomposition as proposed in Eq. (6), we develop a sparse version of mHOOI, where we replace the computation
of the SVD in step (A), by the sparse SVD :

argmin
F,Z

|| X(L) − FZt ||2F +γ1 || F ||1, (7)

s.t. γ2 || Z:k ||1 + || Z:k ||2F≤ 1 (8)

where the meta-parameters γ1 and γ2 allow for tuning the trade-off between accuracy and sparsity of the
approximation. To solve this matrix factorization (??), we use the SPAMS library on matlab.6 We call this
decomposition a High Order sparse SVD (HOsSVD). Since the matrix Ui+1 is not necessarily orthogonal anymore,
we compute the subspace spanned by this matrix by performing its QR decomposition, and we retain only the
first K column vectors of the Q part. The same goes for Vi+1. Writing qr(Vi+1,K) this operation, Algorithm 2
presents the computation of F, the lower dimension factor matrix stemming from this high order sparse SVD
reduction (HOsSVD).



4.3 State of the art methods
Both proposed approach mHOOI and HOsSVD will be compared by state of the art approach. Notice the
following decomposition :

argmin
U,V,W

|| X(L) −UG(L)(W⊗V)t ||2F , (9)

Where U ∈ RL×KL , V ∈ RT×KT , W ∈ RL×KS and G(L) ∈ RKL×KTKS is a dense matrix. The High order
orthogonal Iteration (HOOI) algorithm provide a solution to this optimisation problem (eq. 9).7, 8 Now by noting
F = UG(L) in the case KL = K, KT = K and KS = 1 we get a solution of the decomposition eq. 6 similar to
the mHOOI algorithm 1.

In,5 they propose a decomposition which constraints matrices U, V, W and G(L) to be non negative and
optionally sparse. By fixing KL = K, KT = K and KS = 1 and imposing sparsity on U and V we get a decomposi-
tion similar to HOsSVD. The factor matrix will be F = U after scaling U such as || w ||2F=|| v:k ||2F= G(L) : k = 1
for all k ∈ 1, ...,K. This decomposition will is called SN-Tucker.

Algorithm 1 Estimation of F via mHOOI
Require: X , K, angular tolerance ε > 0, et imax.
i = 0
W(1)

0 = left−1−SV D(X(3))
while i < imax or acos(< W(1)

i ,W(1)
i−1 >)>ε do

(A). [U(K)
i+1 ,Λi+1,V(K)

i+1 ] = K−SV D(X(L)(W(1)
i ⊗ I))

(B). W(1)
i+1 = left−1−SV D(X(S)(V(K)

i+1 ⊗ U(K)
i+1))

i = i+ 1
end while
F = U(K)

i Λi

Algorithm 2 Estimation of F via HOsSVD
Require: X , K, γ1, γ2, angular tolerance ε > 0, et
imax.
i = 0
W(1)

0 = left−1−SV D(X(3))
while i < imax or acos(< W(1)

i ,W(1)
i−1 >)>ε do

(A). Ui+1, Vi+1 minimising (??) with
X(L)(W(1)

i ⊗ I).
A = qr(Ui+1,K), B = qr(Vi+1,K)
(B). W(1)

i+1 = left−1−SV D(X(S)(B ⊗ A))
i = i+ 1

end while
F = U(K)

i

5. RESULTS AND APPLICATIONS
In this section we present different empirical results on the convergence speed of mHOOI, the convergence of
HOsSVD and his performances on a model of FC. First, we present the model, then the different empirical results.
Finally the HOsSVD method is applied on real epileptic data.

Matlab code for HOOI, mHOOI, and HOsSVD can be found here ∗. These codes uses the MATLAB Tensor
toolbox Version 2.6 † and the sparse SVD is done using the SPAMS toolbox version 2.6 ‡? Finally the SN-Tucker
algorithm come from the toolbox §

5.1 Model
Epileptic seizure implies a pathological FC that starts in a focal brain onset, then spreads to the other connected
regions, and sometimes split to give rise to new FC components. Fig. 3 displays a characteristic example of actual
FC time series measured by the phase lock value (PLV).2 The model we propose is aimed at reproducing the
global structured pattern of FCs’ activation, and the uncertainties of the measures. More precisely, we consider a
matrix X ∈ RL×T , where xlt is set to a high value if the FC of index l ∈ {1, . . . , L} is active at time t ∈ {1, . . . , T},
and to a low value otherwise (to account for the non ON-OFF discrepancy of the PLV measurement, we choose
values equal to 0.7 and 0.2, respectively). A cluster Cn, n ∈ {1, . . . , N}, is composed of all FCs that are activated
over the same period of time Tn, figure 4 present clusters of FC activation. This is for the deterministic part of
∗Algorithms used in this article: FCTensDec?

†MATLAB Tensor Toolbox Version 2.63

‡SPAMS toolbox version 2.66

§www2.imm.dtu.dk/pubdb/views/edoc_download.php/4718/zip/imm4718.zip5

https://github.com/FrusqueGaetan/FCTensDec
https://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
http://spams-devel.gforge.inria.fr/
www2.imm.dtu.dk/pubdb/views/edoc_download.php/4718/zip/imm4718.zip


the model, defining the structural and temporal pattern of FCs activation, common to all seizures. Superimposed
to it, we add a seizure dependant random component, composed of four uncertainty sources:

i Random duration: each activation period Tn is uniformly distributed between a minimum duration (here, 5
time steps) and T

N time steps (the binary variable α allows to able (1) or disable (0) this random mode).

ii Activation error: with probability β ∈ [0, 1], each FC of a given group Cn incurs the risk to be replaced by
any other randomly chosen FC.

iii Connectivity noise: we add to xlt a Uniform noise in the interval [0, σ] if the FC is inactivated, [1− σ, 1] else.

iv Jitter: All FCs of the same group start activating with independent jitters, uniformly distributed in
[
− δ2 ,

δ
2
]
.

Figure 5 displays one realization of these synthetic FC time series. Compared to real data, the model succeeds
in reproducing a realistic global pattern. More importantly, as it allows a control of the nature and the intensity
of variability between epochs, it will serve to evaluate the sensitivity and the robustness of the different dimension
reduction methods for clustering, with respect to each source of uncertainty.

To this end, we simulate different seizures of a same patient as i.i.d. realizations of our model with the same set
of parameters b = [α, β, σ, δ]. As for real data, the S modeled seizures are then stacked in a tensor X ∈ RL×T×S .
Figure 6 displays 4 realisations of the model X::i corresponding to the particular choice [α = 1, β = 0.2, σ =
0.6, δ = 0.3], L = 66, T = 100 and S = 4.

5.2 On the convergence speed of mHOOI vs HOOI
To empirically observe the convergence towards the optimal solution, with faster performance than HOOI
algorithm we propose the following experiment. We consider tensors from the model presented above, with
different configuration of noise vector. We fix KL = KT = 3 and KS = 1. We compare the performance of both
HOOI and mHOOI algorithm by computing the total variance at each iteration tvar(t) =|| Gi ||2F for HOOI,
tvar(t) =|| Fi ||2F (since they are matrices containing all the variance) and the log differential of the total variance
between two consecutive iterates ldvar(t) = log(tvar(t)− tvar(t− 1))). Fig. 7 shows the mean of tvar(t) for the
first 100 iterations using 100 realisations of the tensor model X associated tot he noise vector bi as input of the
algorithm. A zoom of the last iteration is provided as well as the first value of ldvar(t) is shown. Notice the lake
of value of ldvar is due to the fact that in average tvar(t)− tvar(t− 1) is negative, however it is not relevant
since it only happen when this difference attains the precision of the machine. The new proposed algorithm has
always better performances than HOOI, with exponential convergence, on every scenario. (??change fig add bi??)

5.3 On the convergence of HOsSVD
As previously we consider the model presented above, we study the convergence of the HOsSVD alone. Since the
objective of SN-Tucker and HOsSVD are not exactly the same it is useless to compare them like mHOOI and
HOOI.

For a set of hyper parameters γ1 and γ2 we compute the first 100 iterations using 100 realisations of the tensor
model X associated to the noise vector bi as input of the HOsSVD algorithm (2). We say that the algorithm
converge on 100 iteration if the angular tolerance criterion is attain at the 100th iteration or before. The table 1
shows for different noise vector bi and hyper parameters the percentage over 120 experiments that converge on
100 iterations. Few situations lead to potential no convergence of HOsSVD algorithm: cases b2 with γ1 = 1,
γ2 = 1 and b9 with γ1 = 1 converge ≈ 90% of the time. There is two kind of non convergence, the first kind
happening once for b9 with γ1 = 1, γ2 = 1 is due to high sparsity constraints that lead to decomposition in null
matrices. The second kind of non convergence happen more frequently, where the algorithm oscillates between
several solutions. The figure 8 shows the convergence critera for 12 realisations with the noise vector b10 and
γ1 = 1, γ2 = 1, where we can observe the second kind of non convergence. Notice convergence always happen
where there is connectivity noise (which is always the case, with different probability distribution, in real dataset).

Finally in order to show that the convergence of this algorithm is fast, the table 1 shows for different noise
vector bi and hyper parameters the percentage over 120 experiments that converge on 5 iterations. We observe fast



convergence when there is connectivity noise in the model. The figure 9 shows the logarithm of the convergence
critera for the same 12 realisations as the figure 8 highlighting the exponential convergence of the algortihm as
the mHOOI algorithm (notice the algorithm is stopped when the angular tolerance criteria is attained, explaining
the stationary phase).

5.4 On the Performances of HOsSVD vs SN-Tucker
5.4.1 Experimental setup
Using the FC model, we compare HOsSVD and SN-Tucker methods derived in Section ??. Each method yields a
lower dimension factor matrix F that serves as an input to k-means. Performance refer here to the ability at
retrieving the FC clusters of the global pattern (fig. (4)). We use a set of hyper-parameters values to compare
both method, notice the effect of these parameters does not impact both methods equally, however they are chosen
to cover the principal behaviours of these algorithms. We fix K to 3 since there is 3 activated FC clusters in the
model. Regarding k-means algorithm, we used k-means++ version9 that we stopped after 1000 iterations and
repeated 120 times with different seeds. The number of cluster is set to N = 4. Finally, to assess the clustering
performance of each method, we use the Adjusted Rand Index (ARI) score,10 computed between the resulting
grouping and the ground truth figure 4: the score equals 1 for a perfect match and 0 if the correspondence does
not outperform a random grouping.

5.4.2 Result
Under these experimental conditions, we evaluate all methods for various configurations of uncertainty and hyper-
parameters. Fig. 10 displays the ARI scores (mean and variance estimated out of 120 independent realizations of
X ) for 10 different combinations of (i) random duration, (ii) activation error and (iii) connectivity and (iv) jitter
noise. For each noise configuration, we highlight the hyper-parameters which give the best performance for both
method by a horizontal line.

HOsSVD outperform SN-Tucker for all configurations considering the best performances of each methods
along the set of hyper-parameters. Also we can observe more variability of the ARI score using HOsSVD methods
with different hyper parameters, showing a stronger impact of the hyper parameters on the final result. in
fact, for high constraints of sparsity, our proposed approach seems to give more relevant decompositions than
SN-Tucker, indeed it is less likely to get identical factors using HOsSVD than SN-Tucker. This can be shown
figure 11 where for a realisation on the noise configuration b = [0, 0, 0.7, 0.3] we show the factor matrix F for
every hyper parameters using HOsSVD method, we can see for high constraints of sparsity non equivalent factors
and a result close to an assignment cluster matrix. Contrary to the previous case, the factor matrix F obtained
using SN-Tucker (fig. (??)) method seems not relevant, with null factors for high constraints of sparsity.

5.5 Application on real data
5.5.1 Data
We consider real iEEG data from 3 patients with focal epilepsy.1, 11 The electrodes used are distributed on stems
implanted in the brain. The activity of the brain is recorded via 5 to 10 electrodes per stem. The space between
two consecutive electrodes is 3.5 mm. Over a recording time of 15 days, 4 seizures were selected for the first
patient, 4 for the second patient and 2 for the third. We only have clinical knowledge of the seizure for the
first patient. Each seizure is delimited in time by a window of 100 seconds centered on the beginning of the
seizures. The signal is sampled at 256 Hz. Only a thirds of the initial contacts are selected to avoid too strong
spatial correlations. The functional connectivity metric used is PLV.2 A strong PLV between two signals means
that their phases are similar. The FC (corresponding to each pair of electrodes) were calculated over a sliding
rectangular window of 4 seconds duration, with a time step of one second. After eliminating the points that suffer
from border effects, the data is formatted as a tensor X ∈ R528×96×4 for the first patient, X ∈ R1035×96×4for the
second and X ∈ R946×96×2 for the third. The FC of each seizure are plotted in 13, 14 and 15 respectively for the
patient 1, 2 and 3.



5.5.2 Methods
From the tensor X , we obtain the matrix F (using Algorithm 2), where the parameters, K = 4, ε = 10−3 and
γ1 = 1, γ2 = 1 for the first patient, γ1 = 0.8, γ2 = 1.6 for the second patient, γ1 = 1.2, γ2 = 0.8 for the third
patient are empirically fixed (It is current to consider between 3 and 5 different steps in an epileptic seizure
justifying K = 4; for γ1 and γ2 we search for the highest value of parameters where results seem coherent).
Fig. 16 17 18 (top) shows the temporal activation profiles of the components of F (corresponding to the matrix V
from Algorithm 2). We apply k-means to F to identify the N = 5 corresponding FC groups. Since F is close to
an assignment matrix (a solution A∗ of Eq. (2)), we retain the 4 groups of smaller sizes, which can be associated
with the 4 activation periods while the the 5th group corresponds to the unsynchronized FCs. Figure 16 17 18
(bottom) materializes the positions of the 33 electrodes projected on the transverse plane (according to the lair of
Tailarach) for each patient. An FC is represented by a link between the pair of electrodes that are in phase.

5.5.3 Results
Patient 1 with 4 epileptic seizure and clinical knowledge 16: There are 4 activation periods that can be
easily associated with 4 steps of the seizures: before seizure, start, propagation and end of the seizure. The time
interval around time 50s is particularly interesting as it shows no activated FC. This is likely to correspond to the
functional decoupling at the early start of the seizure, a short period when iEEG activities in different areas of
the brain are suddenly decorrelated. The four FC groups can be associated to four snapshots of a time-varying
graph: before the seizure, only two electrodes interact in what could correspond to the epileptogenic zone. At the
beginning of the seizure: spreading of FC activation with the appearance of a cluster of FC localized around
the epileptogenic zone. During the crisis, other FC appears spontaneously in the other hemisphere, at the same
time the FC are diffused in the left hemisphere. At the end of the crisis, the two hemispheres interact with the
appearance of common FC. The graphs obtained are in agreement with the clinical results, the focus of the
beginning of the seizure being close to the graphs "before-seizure" and "seizure start". The propagation of seizures
in the right hemisphere of the brain is well represented by the graphs "Propagation" and "Seizure end".
Patient 2 with 4 epileptic seizure without clinical knowledge 17: As well as the previous patient 4
activation periods that can be easily associated with 4 steps of the seizures: before seizure, start, propagation
and end of the seizure. There is more period without activation, certainly because FC patterns of each seizure
seems more erratic than the previous patient. The four FC groups can aswell be associated to four snapshots of a
time-varying graph: at step 1 only two electrodes interact, at step 2 and 3 spreading of FC activation in all the
brain. The last step present we return to a situation close to the first.
Patient 3 with 2 epileptic seizure without clinical knowledge 18: Contrary to the two previous seizure,
it is more difficult to distinct activation period, this can be explained by the fact that we only have access to
two epileptic seizure for this patient, which mean less robust results. However the graph corresponding to each
activation are localized spatially, which indicate a cohenrency in the obtained results.

6. CONCLUSION
We have presented new tensor decompositions with original algorithmic implementation. We shown through a
general model of FC the fast empirical convergence of these algorithms compared to the already existing HOOI.
The advantage of using HOsSVD instead of a state of the art tensor non negative sparse tensor decomposition
to find sparse FC common to each seizure is exhibited. Finally, applied to real iEEG data recorded during an
epileptic seizure, our method allowed us to identify FC activation groups corresponding to significant time periods
of the evolution of the seizure.

As a perspective of this work, we would like to generalise the proposed tensor reduction to the general case
where the seizure mode can be decomposed in several factor (KS > 1).
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(a) (b)

(c) (d)
Figure 1: (a) 4 simulated iEEG signals, (b) FC computed between the 6 pairs of signals by PLV, (c) & (d) Graphs with
electrodes 1,2,3 and 4 as nodes and PLV measures as the weight of edges, at t=300 and t=2200 (red/blue bars on Fig. (a)
and (b)).

Figure 2: Model of the data processing pipeline: tensor X is reduced to a factor matrix F, and k-means is applied on F



Figure 3 Figure 4 Figure 5

(a) (b)

(c) (d)
Figure 6: Example of 4 realisation our model with b = [1, 0.2, 0.6, 0.3]



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)
Figure 7: tvar(t) for the first 100 iterations using the tensor Xmodel as input of the algorithm with a zoom of the last
iteration and the first value of ldvar(t) where (a) corresponds to the configuration b1, (b) b2, (c) b3, (d) b4, (e) b5, (f) b6,
(g) b8, (h) b8, (i) b9, (j) b10, (k) b11, (l) b12,



[γ1, γ2]= [0.1, 0.1] [0.1, 2] [2, 0.1] [0.4, 0.4] [0.4, 1] [1, 0.4] [0.7, 0.7] [1, 0.7] [0.7, 1] [1, 1]
b1 = [0, 0, 0, 0] 100 100 100 100 100 100 100 100 100 100
b2 = [1, 0, 0, 0] 100 100 100 100 100 100 100 100 100 91.6667
b3 = [0, 0.3, 0, 0] 100 100 100 100 100 100 100 100 100 100
b4 = [0, 0, 0.8, 0] 100 100 100 100 100 100 100 100 100 100
b5 = [0, 0, 0, 0.4] 100 100 100 100 100 100 100 100 100 100
b6 = [0, 0.2, 0.7, 0] 100 100 100 100 100 100 100 100 100 100
b7 = [0, 0, 0.7, 0.3] 100 100 100 100 100 100 100 100 100 100
b8 = [0, 0.2, 0, 0.3] 100 100 100 100 100 100 100 100 100 100
b9 = [1, 0.2, 0.7, 0.3] 100 100 100 100 100 100 100 100 100 100
b10 = [1, 0.2, 0, 0.3] 100 100 100 100 100 91.6667 100 91.6667 100 91.6667
b11 = [1, 0.2, 0.7, 0] 100 100 100 100 100 100 100 100 100 100
b12 = [1, 0, 0.7, 0.3] 100 100 100 100 100 100 100 100 100 100

Table 1: % of 120 experiment which converge at least before 100 iteration using HOsSVD algorithm with
parameters γ1, γ2 and with the noise configuration bi.

[0.1, 0.1] [0.1, 2] [2, 0.1] [0.4, 0.4] [0.4, 1] [1, 0.4] [0.7, 0.7] [1, 0.7] [0.7, 1] [1, 1]
b1 = [0, 0, 0, 0] 100 100 100 100 100 100 100 100 100 100
b2 = [1, 0, 0, 0] 83.3333 33.3333 33.3333 33.3333 8.3333 8.3333 8.3333 8.3333 8.3333 0
b3 = [0, 0.3, 0, 0] 83.3333 0 0 0 0 8.3333 0 0 0 0
b4 = [0, 0, 0.8, 0] 100 100 100 100 100 100 100 100 100 100
b5 = [0, 0, 0, 0.4] 100 100 100 100 100 100 100 91.6667 91.6667 75
b6 = [0, 0.2, 0.7, 0] 100 100 100 100 100 100 100 91.6667 100 83.3333
b7 = [0, 0, 0.7, 0.3] 100 100 100 100 100 100 100 100 100 100
b8 = [0, 0.2, 0, 0.3] 50 33.3333 25 33.3333 8.3333 33.3333 33.3333 25 25 8.3333
b9 = [1, 0.2, 0.7, 0.3] 100 100 100 100 100 100 100 100 100 8.3333
b10 = [1, 0.2, 0, 0.3] 0 0 0 0 0 0 0 0 0 0
b11 = [1, 0.2, 0.7, 0] 100 100 100 100 100 100 100 75 75 16.6667
b12 = [1, 0, 0.7, 0.3] 100 100 100 100 100 100 100 100 100 25

Table 2: % of 120 experiment which converge at least before 5 iteration using HOsSVD algorithm with parameters
γ1, γ2 and with the noise configuration bI .

Figure 8: Convergence criteria for 12 realisation the
experiment configuration b10 and [γ1, γ2] = [1, 1].

Figure 9: Log of the convergence criteria for 12
realisation of the experiment configuration b10 and
[γ1, γ2] = [1, 1].
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Figure 10: ARI score using SN-Tucker and HOsSVD algorithme in function of the sparsity parameters and the configurations



Figure 11: F reduction for all sparsity configurations using HOsSVD

Figure 12: F reduction for all sparsity configurations using SN-Tucker



(a) (b)

(c) (d)
Figure 13: Functional connectivity of all 4 seizures for the patient 1



(a) (b)

(c) (d)
Figure 14: Functional connectivity of all 4 seizures for the patient 2

(a) (b)
Figure 15: Functional connectivity of the 2 seizures for the patient 3



Figure 16: patient 1) : (above) activation profile of
HOsSVD (variable V of algorithm 2 (under) Cluster
of FC corresponding to the 4 activation steps of the
seizures

Figure 17: patient 2) :(above) activation profile of
HOsSVD (variable V of algorithm 2 (under) Cluster
of FC corresponding to the 4 activation steps of the
seizures.

Figure 18: patient 3) : (above) activation profile of
HOsSVD (variable V of algorithm 2 (under) Cluster
of FC corresponding to the 4 activation steps of the
seizures.

REFERENCES
[1] Guenot, M., Isnard, J., Ryvlin, P., Fischer, C., Ostrowsky, K., Mauguiere, F., and Sindou, M., “Neu-

rophysiological monitoring for epilepsy surgery: the talairach seeg method,” Stereotactic and functional
neurosurgery 77(1-4), 29–32 (2001).

[2] van Mierlo, P., Papadopoulou, M., Carrette, E., Boon, P., Vandenberghe, S., Vonck, K., and Marinazzo, D.,
“Functional brain connectivity from EEG in epilepsy: Seizure prediction and epileptogenic focus localization,”
Progress in neurobiology 121, 19–35 (2014).



[3] Kolda, T. G. and Bader, B. W., “Tensor decompositions and applications,” SIAM review 51(3), 455–500
(2009).

[4] De Lathauwer, L., De Moor, B., and Vandewalle, J., “A multilinear singular value decomposition,” SIAM
journal on Matrix Analysis and Applications 21(4), 1253–1278 (2000).

[5] Mørup, M., Hansen, L. K., and Arnfred, S. M., “Algorithms for sparse nonnegative tucker decompositions,”
Neural computation 20(8), 2112–2131 (2008).

[6] Mairal, J., Bach, F., Ponce, J., Sapiro, G., Jenatton, R., and Obozinski, G., “SPAMS: A SPArse Modeling
Software, v2. 3,” URL http://spams-devel. gforge. inria. fr/downloads. html (2014).

[7] Zhang, A. and Xia, D., “Tensor SVD: Statistical and Computational Limits,” IEEE Transactions on
Information Theory (2018).

[8] De Lathauwer, L., De Moor, B., and Vandewalle, J., “On the best rank-1 and rank-(r 1, r 2,..., rn)
approximation of higher-order tensors,” SIAM journal on Matrix Analysis and Applications 21(4), 1324–1342
(2000).

[9] Arthur, D. and Vassilvitskii, S., “k-means++: The advantages of careful seeding,” in [Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms ], 1027–1035, Society for Industrial and
Applied Mathematics (2007).

[10] Hubert, L. and Arabie, P., “Comparing partitions,” Journal of classification 2(1), 193–218 (1985).
[11] Chauvel, P., Rheims, S., McGonigal, A., and Kahane, P., “French guidelines on stereoelectroencephalography

(seeg): Editorial comment.,” Neurophysiologie clinique= Clinical neurophysiology 48(1), 1 (2018).


	Abstract
	Introduction
	Notations
	Reduction methods
	mHOOI
	HOsSVD
	State of the art methods

	Results and applications
	Model
	On the convergence speed of mHOOI vs HOOI
	On the convergence of HOsSVD
	On the Performances of HOsSVD vs SN-Tucker
	Experimental setup
	Result

	Application on real data
	Data
	Methods
	Results


	Conclusion
	Acknowledgement

